> Техника, страница 6 > Абсолютная система мер
Абсолютная система мер
Абсолютная система мер, абсолютные единицы, система мер, в которой все геометрии., механич. и физич. величины измеряются при помощи произвольно взятых (основных) единиц для нескольких независимых друг от друга величин. Чаще всего А. с. м. называют систему, в которой произвольные (основные) единицы взяты для длины, массы и времени. А. с. м.— устаревший термин, вытекавший из стремления установить «абсолютные» основные единицы, не изменяющиеся во времени и могущие быть всегда с точностью воспроизведенными. В 1791 году, во время Французской революции, была сделана попытка установления такой А. с. м., где за единицу длины был принят метр, за единицу массы — килограмм, за единицу времени— с е к у н д а (смотрите Метрическая система мер). Парижским конгрессом 21 сентября 1881 г. была установлена для научных целей т. н. система сантиметр-грамм-секунда (или сокращенно CGS), имеющая единицей длины сантиметр, единицей массы —грамм, единицей време-н и—секунду (среднего солнечного времени). Эти три единицы в системе являются основ-н ыми, все же другие будут производи ы-м и единицами и м. б. выражены в функциях некоторых степеней основных единиц. Эти функции называются размерностями (смотрите) (измерениями) единиц и изображаются в виде заключенных в прямоугольные скобки произведений степеней трех основных величин: [L] длины, [М] массы и [7Т] времени.
1. Поверхности имеют размерность £La], единица измерения их есть квадратный сантиметр; объёмы [L3] имеют единицей измерения кубический сантиметр.
2. Средняя скорость тела выражается отношении пройденного пути [L] к времени [Г]; поэтому скорость имеет размерность [L7,_1], и ее единица—скорость, при которой тело в каждую секунду проходит путь в 1 см. Равномерное ускорение, или приращение скорости в единицу времени, имеет размерность [LT~2]. Сила определяется из соотношения f=mj (второй закон Ньютона), где т — масса,.)—ускогрение; отсюда ее размерность [LMT~2]. Единицей силы в системе CGS является сила, которая массе в 1 г сообщает ускорение в 1 см/ск2. Эта сила называется диной. Работа выражается произведением силы на пройденный путь; отсюда размерность ее [L2MT~2]; ту же размерность [L2MT~Z] имеет и кинетическая энергия, измеряемая половиной произведения массы на квадрат скорости (х/2 mv2); единица работы — эрг, работа, которую производит сила в 1 дину на пути длиною в 1 см. Ра бота, при которой 1 килограмм поднимается на высоту 1 м, называется в технической системе мер килограммометром; он равен 98 060 000 эргов. Единица мощности, то есть работы, производимой в единицу времени, имеет размерность [L2MT~3] и относится к 1 лошадиной силе, или паровой лошади (75 килограммм/ск), как 1 : (75 х×98 060 000). Лошадиная сила поэтому равна 75 х 98 060 000=735,5.107 эрг/ск== 735,5 джоулей (абс.). Следует отметить, что в настоящее время джоуль определяется из практических электрических единицам.). Т. о. интернациональный джоуль не равен в точности абсолютному джоулю. По последним измерениям 107 эргов=1 абсолютному джоулю== 0,999 интернационального джоуля.
3. Количество тепла, эквивалентное единице работы, эргу, есть единица тепла в CGS. Практическая единица — калория, или, точнее, килограммкалория,— то количество тепла, к-рое повышает температуру 1 килограмм воды от 14°,5 до 15°,5, соответственно механическому эквиваленту тепла (1 Cal=427 килограммм=4,19 джоуля).
Свести выбор всех единиц только к трем основным (CGS), однако, не удается. Так наз. абсолютная температура не представляет собою меры температуры, вытекающей из системы CGS; она выражается увеличенным в 273,1 раза отношением объёма идеального газа при измеряемой температуре к объёму, который занимает тот же газ под тем же давлением при температуре замерзания воды. Коль скоро из системы CGS не вытекает мера температуры, след., нельзя вывести и меры зависящего от этой последней коэффициента расширения. Величины этого рода по отношению к трем основным мерам имеют размерность 1, т. e. [L°M°T0]; точно так же обстоит дело с мерами теплоемкости, уд. и атом, весов и др.
4. Если геометрич. и механич. величины измеряются только в значениях длины, массы и времени (CGS), то этого не м. б. при измерении электрич. и магнитных величин,— здесь существенную роль играет среда, в которой происходят электрич. и магнитные явления. При создании абсолютных систем диэлектрической постоянной или магнитной проницаемости среды искусственно приписывалась размерность нуль. В первом случае получилась т. н. электростатическая (CGSE), а во втором — электромагнитная (CGSM), абсолютная система мер (смотрите Практическая система мер). В более общем виде можно не предрешать выбора системы (CGSE или CGSJ f), сохраняя в ф-лах размерности, соответствующие степени диэлектрической постоянной е и магнитной проницаемости μ. Отталкивательная сила между двумя заряженными электричеством маленькими шариками прямо пропорциональна произведению количеств электричества е и e и обратно пропорциональна квадрату расстояния г между ними (закон Кулона). Мы полагаем по-
сс этому в системе CGSE частное - 2 равным силе [LMT~2], откуда е=с будет иметь размерность [ΐβ Ji2 T *], а при учете диэлектрической постоянной [ΐβ М* T 1 Д]. Электростатической единицей количест ва электричества называется то количество электричества, которое отталкивает равное ему количество, находящееся на расстоянии 1 см, с силою в 1 дину. Электростатический потенциал имеет размерность [ΐβ М^ Т, х] „ а при учете е—размерность [τβ ж2 r~v4.
Частное от деления величины заряда на потенциал поверхности называется емкостью проводника и имеет размерность [L], а при учете диэлектрич. постоянной—[Le]. Емкость проводника относительно земли равна 1, если при заряде количеством электричества равном е потенциал любой точки его поверхности относительно земли равен 1.
5. Из соображений, подобных тем, какие приведены при рассмотрении количества электрического заряда, размерностью магнитного полюса, представляемого как заряд нек-рым количеством свободного магнетизма, будет [ΐβ Τϋβ Т-1], а при учете магнитной проницаемости μ размерность магнитного полюса выразится символом
Внешние действия магнита м. б. заменены действиями идеального магнита, у которого заряд как сев., так и южн. магнетизма сосредоточен в одной точке. Магнитный полюс с количеством магнетизма равным 1 отталкивает полюс другого магнита, обладающий равным количеством магнетизма, на расстоянии 1 сантиметров с силой в 1 дину. Соответственно электрич. потенциалу имеется также магнитный потенциал размерности [ΐβ T *], а при учете магнитной проницаемости μ — [τβ Ж* T 1 μ 4. Если на магнитный полюс с зарядом ш действует отталкцвательная, сила К в некоторой точке магнитного поля, то частное от деления силы К на количество магнетизма m называется силой, или напряженностью, магнитного поля в данной точке. Напряженность магнитного поля имеет размерность _L ^ Ж* 21-1], а при учете магнитной проницаемости μ — [тГ^ ά]β 2,_1μ_4. В практической системе мер напряженность магнитного ноля измеряется в А /см.
6. За единицу силы э л е к т р и ч. тока принимается в системе CGSM сила тока, который, проходя по дуге /длиной в 1 сантиметров окружности радиуса 1 см, отталкивает магнитный полюс (единицу количества магнетизма), помещенный в центре круга, по направлению, перпендикулярному к плоскости круга, с силой равной 1 дине (закон Био-Савара). Десятая часть этой абсолютной единицы силы тока с большой точностью равна практической единице электрического тока — амперу. Круговой ток радиуса г и силы I действует на магнитный полюс т, помещенный в центре круга, с отталкивательной силой КТ=т~.
Отсюда получается размерность для силы тока [τβ b$ Τ’1], а при учете магнитной проницаемости [i* Ж* Ί1 μ~4· Силу тока можно определить как количество электричества, протекающее в 1 ск. через поперечное сечение проводника; отсюда количество электричества выражается произведением силы тока на время, размерность его
[Э Λ*]. а при учете магнитной проницаемости [τβ μ 4· По проводнику, в котором ток имеет силу равную 1, протекает в 1 ск. количество электричества равное 1. Десятая часть этой абсолютной единицы количества электричества—ампера,:—с большой точностью равна практической единице — кулону. Электромагнитный потен циал имеет размерность ΐβ Μ^ Т 2]. · Сопоставление размерностей в электростатических и электромагнитных единицах показывает, что отношение размерностей количества электричества в электромагнитной мере и в электростатической мере
[τβ Ж* Т~4 имеет размерность скорости [LT_1]. Измерением одних и тех же количеств электричества в обеих системах мер Вебер и Кольрауш нашли величину отношения обеих мер равной 3.1010 см/ск (скорости света). Отношение между размерностями потенциала в электростатической и электромагнитной системах имеет значение обратное по сравнению с отношением размерностей количеств электричества в обеих системах, потому что как в той, так и в другой системах произведение количества, электричества на потенциал представляет одну и ту же величину — работу. Разность потенциалов и электродвижущая сила (смотрите) имеют одну и ту же рамзерность. Практическая единица потенциала с большой степенью точности м. б. принята равной 10е абсолютным единицам (CGSM). Мощность электрического тока равна произведению силы тока на эдс и имеет ту же размерность, как и механическ. мощность:
[τβ ] β Т~4. [т) ж“ г"1] - [ϋ мт *]
Практическая единица мощности есть ватт, равный приблизительно 107 CGS единицам. Точные современные измерения дают 0,999.10-7 ватт=1 эрг/ск.
Отношение эдс к силе тока i^y-] зави сит только от свойств проводника (закон Ома) и называется сопротивлением; размерность его [LT-1], а при магнитной проницаемости. Практическая единица сопротивления есть ин-тернациональный ом, равный 1,00051.10& CGS единицам сопротивления. Если конденсатор заряжается количеством электричества Q до потенциала Е, то частное С=-%
tj
называется емкостью конденсатора, раз-мерность ее [L-1 22], а при учете магнитной проницаемости [L-1 Тг μ-1]. Емкость в электромагнитной мере в (3.1010)2 раз менее, чем в электростатической, или единица ее в электромагнитной мере в 9.1020 раз больше.
В последнее время сделан ряд предложений восстановить абсолюти. характер системы мер. Американский физик Майкельсоп предлагает в качестве единицы длины взять длину волны (в пустоте) определенного однородного света (какой-нибудь спектральной линии—например красной линии кадмия). 1 ле=1553164,19 длин волны красной кадмиевой линии при 15° и нормальном атмосферном давлении (1926 год). Но гораздо дальше идет немецк. физик Планк. В природе мы встречаем целый ряд т. н. у н и-версальных величин, универсальных постоянных. Таковы, например, скорость распространения света, постоянная закона всемирного тяготения, заряд и размеры электрона и т. д. Этими величинами Планк и предлагает воспользоваться для выбора единиц будущих мер.
Лит.: Хвольсон О. Д., Курс физики, т. 1, ГИЗ, Берлин, 1923; Plank М., «Annalen der Physik», 1900.